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On the quantum theory of a laser with inhomogeneous 
broadening 

D. 0. RISKA and S. STENHOLM 
Research Institute for Theoretical Physics, University of Helsinki, Finland 
M S .  received 19th August 1969 

Abstract. The results of the semi-classical theory for the laser are compared 
with the results of the quantum theory given by Scully and Lamb. I t  is found 
that the spatial structure of the cavity mode leads to important corrections. 
For moving atoms the cavity mode is smeared, and a generalized form of the 
Scully-Lamb theory (for resonance between the atomic transitions and the 
cavity mode) leads to agreement with the semi-classical theory. The  photon 
distribution for the case with moving atoms is obtained and compared with the 
results of the Scully-Lamb theory. 

1. Introduction 
Much of the discussion of the gas laser has been done within the framework of 

Lamb’s (1964) semi-classical theory. This theory is capable of explaining, at least 
qualitatively, most observed features of laser operation. For one-mode operation the 
theory has been treated in the case of arbitrary intensities by Stenholm and Lamb 
(1969). They prove the validity of some simple results earlier conjectured by Lamb 
(1964) in the limit where the Doppler linewidth is much larger than the natural 
linewidth. 

Limiting themselves to the case of stationary atoms, Scully and Lamb (1967) have 
incorporated the basic philosophy of the semi-classical theory into a theory which also 
takes into account the quantum nature of the electromagnetic field. As the case of 
stationary atoms can be solved exactly in the semi-classical theory, we compare the 
two approaches in $ 2  and find that the Scully-Lamb result corresponds to the semi- 
classical one, provided that the spatial structure of the cavity mode is neglected. For 
moving atoms this is expected to be less important, as the spatial structure is smeared 
by the motion. We therefore use the approach of Scully and Lamb (1967) in $ 3 to 
obtain a generalization of their equations, valid for moving atoms with an inhomo- 
geneously broadened line due to Doppler shifts. These equations are solved under 
steady-state conditions in $ 4 and compared with the results given by Scully and Lamb. 
The  conclusions of the paper are summarized in $ 5 .  

2. Comparison between quantum and semi-classical theory 
The quantum theory of the laser developed by Scully and Lamb (1967) is based 

on the same ideas as the semi-classical theory of Lamb (1964). One assumes a highly 
selective optical cavity into which atoms in the upper state la )  of the level pair la )  
and l b )  are introduced at random times. The energy difference hw between la )  and 
Ib) is assumed to be nearly in resonance with one eigenfrequency Q of the laser 
cavityt. The interaction between an injected atom and the electromagnetic field in 
the cavity is treated exactly over a time long enough for the atom to decay spontane- 
ously to either of two states IC),  Id). This decay is treated in the Wigner-Weisskopf 
approximation, which makes the levels la )  and J b )  appear to decay with rates ya and 
yb ,  respectively. The  change in the density matrix of the radiation field is calculated 
and the changes Sp caused by a set of independent atoms are summed over a time 

t The  corresponding cavity eigenmode is sin Kz, where K = njc. 
189 
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At in order to give a coarse-grained approximation to the derivative dpldt. The  
losses in the cavity are also treated in a similar way by introducing individual atoms in 
the lower one of two rapidly decaying (i.e. broad) levels 1 x )  and lp). 

The basis of this approach is that atomic correlations may be neglected. In  a laser 
appreciably above threshold it is a natural assumption to regard the electromagnetic 
field as a reservoir, which can absorb and emit quanta without changing significantly. 
This is exactly true if the field is in a coherent state, in the sense of Glauber (1963). A 
similar reservoir for particles is provided by the condensed bosons in the treatment of a 
boson system given by Bogoliubov (1947) and Hugenholtz and Pines (1959). The 
quantum theory determines the photon statistics and gives an expression for the 
average number of quanta in the lasing mode 

The  second term is a contribution to the lasing field from amplified spontaneous 
emission noise. The factor A is the mode gain and C is the loss; B is the non-linear 
saturation parameter. poo is a normaiization constant for the density matrix of the 
radiation field. When A % C the laser is far above threshold and the last term in (1) 
may be neglected. Introducing the dimensionless intensity parameter 

we can compare (2) with the results of the semi-classical theory for stationary atoms. 
The  theory of Lamb (1964) and Stenholm and Lamb (1969) determines the laser field 
E from 

where L is the length of the cavity and Q is its quality factor (Q value). S(z)  is the 
'out-of-phase' component of the polarization in the atomic medium. For stationary 
atoms S(z)  can be calculated exactly? : 

(Here we have assumed resonance w = a.) B is the atomic dipole matrix element 
coupling the states la )  and 16), and the parameter f ir  gives the pumping rate. Y a h  is 
the average of the decay rates ya and Y h .  Replacing sin2 Kz by its average value 4, 
we find from (3) and (4) 

(5) 
E o Y d  1 - 
QY2iT 1 +I'  

When I = 0 we obtain the threshold value QT and defining 

we find from (5) 
C = Q-'Q 

A 1 = - - - 1  
C 

t The parameter I in equation (4) has been proved to equal the one in equation (2) (Riska 
and Stenholm 1969). 
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as in equation (2). This calculation takes the spatial structure of the cavity mode into 
account only in an average way and seems justified because the field is coherent over 
the whole cavity. This is, however, not quite correct as the stationary atoms ‘see’ 
the field at one point only and have no way of averaging the field over the cavity. The  
result of the semi-classical equations (3) and (4) can be evaluated exactly to give? 

A 
C 

I =  -{1-(1+2I)-1’2} 

from which we obtain 

which expanded near threshold A 2: C gives 

I = - - - 1  + - - - 1  -.... 
2 ( A  3 c  I 2: I 2  

(9) 

The  expression (11)T differs appreciably from (8). 
In  the case with moving atoms it may be expected that the atom may ‘feel’ the 

average of the field over the spatial variation in the cavity mode. The  approximation 
called REA by Stenholm and Lamb (1969) is found to describe the case of moving 
atoms within a rather wide range of intensities. This gives at resonance and for a 
broad velocity distribution an expression for the intensity 

where u is the width of the atomic velocity distribution. If we define A as 

we find 

I = (-g-l, 
This expression gives the same threshold condition as (S), but a steeper slope above 
threshold. With moving atoms the intensity is thus given by a rather simple relation 
(12) as compared with the result (10) for stationary atoms. 

In  this paper we suggest a modification of the Scully and Lamb (1967) theory by 
considering an atomic line which is inhomogeneously broadened by the Doppler 
shifts caused by atomic motion. We use the results of Scully and Lamb and find that 
the generalization is straightforward in the resonant case ( w  = Cl), because then only 
one set of atoms with velocities U around zero is involved. For a detuned laser 
{U # Cl) the two travelling-wave components of the standing wave in the cavity 
involve two sets of atoms, with velocities such that the Doppler shift compensates the 
detuning 

t Inserting (4) in (3), we obtain an integral which can be calculated by the formula 2.458.2 
of Ryshik and Gradstein (1963) and 331.21b of Grobner and Ilofreiter (1965). The  result is 
given in equation (9). 

Inclusion of the mode structure into the quantum theory for stationary atoms has been 
proved to give the result (10) (Riska and Stenholm 1969). 
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The two sets involved complicate the use of the theory of Scully and Lamb, and we 
intend to discuss this case separately. 

The term proportional to poo  in (1) makes it difficult to define an exact threshold 
in the quantum theory. If we define the threshold using only the first term in (l), we 
find the same condition as in the semi-classical theory, A = C. At threshold and 
below it the spontaneous field (A/B)poo dominates. In this case, however, the yalidity 
of the basic assumption that the atoms interact independently with the field can be 
questioned. The intensity is low and absorption of one quantum may no longer be 
neglected. The  influence of cavity modes with energies near AQ should also be con- 
sidered in this region, and might be expected to cause a shift in the threshold. Below 
threshold it is thus not clear whether the expression (1) can give more than a quali- 
tative picture of the laser field. The  experimental results by Sayers et al. (1969) do, 
however, confirm the existence of this term. In  this paper we assume the laser to be 
well above threshold, and neglect the term containing poo.  

3. Equation of motion with inhomogeneous broadening 
We assume that at random times atoms in the state In)  are injected into the cavity 

with a rate ya, and, in order to describe losses, atoms in the lower non-resonant state 
I p )  are injected with a rate yo. The atoms are supposed to interact independently 
with the radiation field, which is a justified assumption well above threshold. 

The Hamiltonian AH for the interaction between an injected atom, with the 
transition energy Am = Ea - E ,  and a cavity mode with frequency 0, is in the dipole 
approximation 

Here a+ is the photon creation operator and 5, 5+ are the raising and lowering opera- 
tors between the states la )  and lb). The population inversion operator oz is defined 
as 

uz = 5 + 5 - 5 5 + ,  (17) 

The  density matrix of the coupled system of the field and an atom injected at to  
has the elements 

Pcrn,L?n, = (‘J., nlplP, n’ ) (18) 

where I Q ,  n )  is a state with n photons in the cavity and the atom in the state 1.) 
where ‘J. is one of {a, b, c, d}. The calculations of Scully and Lamb (1967) give the 
following equations of motion for the density matrix elements : 

P a n a n ,  = - iNn - %’IQ - iYa>Pan,an, 
- ik(n+ 1)1’2pbn+l .an’ -g(n’  + 1)1 ’2pan ,bn’+l )  (19a) 

-;{idn+ 1 ) 1 ’ 2 p b n + l , b n ’ + l - g ( n ’ +  1)1’2pan,an’) (19b) 

-i{g(n+ 1)1’2fan,an‘-g(n‘+ 1 )1 ’2Pbn+l ,bn ‘+l )  (19c) 

- i(g(n+ 1)1 ’2 fan ,bn ’+l  +g(.’+ 1)1i2Pbn+l .an’}  ( 1 9 4  

Pan, bn’ + 1 = - i{(n - n’)sz + - n, - iya b}Pan, bn’ + 1 

P b n  + 1 ,an’ = - i{(n - n’)Q - - O) - iYab)p bn + 1 ,an’ 

b n + 1 ,  bn’ + 1 = - i{(n - n’)Q - iYb)p bn + 1 ,  bn’ + 1 
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where Y a b  = i(Ya+Yb), and, further, 
t ,+T 

~ c n , c n , ( t o  + T )  = Ya J dt’p,n,an,(t’) (20a) 

Pdn+l,dn’+l(tOf = Y b  1 dt’Pbn + 1 , b n ’  + l(t’)* ( 2 0 4  

t o  
t ,+T  

t ,  

Here T is a time which is long compared with all decay times y-l. This means that 
we can integrate the equations (19) from t o  to to  + T and set 

P ~ n , a n ’ ( ~ o  + T )  = P a n . b n ’ + l ( t O  + T ,  = P b n + l , a n ’ ( t O  T )  
(21 ) 

Pan ,an‘ ( to )  = P o  ( 2 2 4  
( 2 2 4  

- - Pbn+l,bn‘+l(tO+ T )  = 0 
as the atom injected at to in the state J a )  has decayed to one of the states IC) or Id)  
at t o+  T. The initial condition is 

Pan,bn’+l(tO) = P b n + l , a n ’ ( t O )  = Pb;i+l,bn’+l(tO) = 0 
where the initial value p o  will be specified later. 

tities 
The  integration of equations (19) leads to a set of linear equations for the quan- 

t , + T  

a,,(% 72’) = 1 d G 5 ” a n W  (23 a> 

u12(n, a’) = / dt ’PUn,bn’+  (23 b)  

UZl(% n’) = J dt’Pbn+l,an’(t’) (23 c )  

%2(% a’) = 1 dt’Pbn + 1 , b n ’  + l(t’) ( 2 3 4  

t ,  
t ,+T 

t o  
t,+T 

t o  
t o  t T 

t ,  
which in matrix form is 

Q(n - a’) - iy, -g(.’ + 1)112 g(n + 1)Ii2 0 
-g(n’ + 1)1’2 Q(n - n’) + A - iy,, 0 g(n+ 1)li2 
g(n + 1)1’2  0 Q(n- n’) - h - iy,b -g(n’ + 

0 g(n + 1) l l2  -g(n’ + 1)1!2 Q(?Z -a’) - iy, 

P. 6 
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X [(n - n’)’g’ - i(n - ?Z’)(Ya - yb)A - z{(n 1) (n’ + 1)}C’]. (27) 
We now deviate from the treatment of Scully and Lamb and assume that the atoms 

have an inhomogeneous distribution of their resonance frequency w. We take the 
stationary atoms to be in resonaiice with the field and assume atomic motion to cause a 
Doppler shift in the frequency 

n 

Instead of introducing one single atom into the cavity, we introduce an ensemble of 
independent atoms with a velocity distribution 

where we assume the velocity width U to be very much larger than yab/K (the Doppler 
limit). As the injected atoms at t = to  are independent of the field, we have 

Pan,an,( t )o  = P O  = b V u ) P n n , ( t o ) *  (30) 
We calculate the change in the density matrix of the field pnn. due to this ensemble 
of atoms injected at t = to .  We have 

a p n n ,  = Pnn‘(t0 + T )  -pnn, ( to)  

= F (j: du Pccn,ccn,(to + T ) )  -pnnf ( to>* (31) 
m 

Here we have contracted with respect to the atomic indices a = a, 6, c, d and summed 
over all velocities a. From (20) and (21) it follows that 

X 

pnit , ( to  + T )  = j {ya%(n, n’) + y b 4 n  - 1 , n’ - 1)) (32) 
- x  

which is a slight generalization of the result of Scully and Lamb. The number of atoms 
introduced during an interval At is YaAt, so that the total change of the field during 
this time is 

From (33) we obtain an expression for the time derivative of the density matrix due 
to atomic gain 

Ap,,. = r,At Ap,,,. (33) 

= - iyarapnn.(t) J dv ~ ( u ) D - ’ ( n ,  n ’ )[ (z2  - ~ ‘ v ~ ) ( Q ( n - n ’ )  - iy,} 
- m  

-g“(n+ 1) +(n’+ 1))C +g’(n-n’)Kv] 
71 

+iybrapr,-l,n,-l(t) 1 dz: W(c)D-’(n-- 1,n’- 1)2g2 C ( n ~ ’ ) l ’ ~  
--io 
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where 
D(n, $2’)  = ( C 2  - K2v2)D(n, n’) (35) 

and the v dependence of w is introduced from equation (28). 
The  loss mechanism is treated in a similar way. The  only difference is that the 

atoms are now injected in the lower state lp) at a rate ra. The resulting change in the 
density matrix due to the loss mechanism is 

m (%I = iy , .yppn+l ,n ,+l( t ) l  dv W(v)D-l(n, n’) 
loss - m  

x Zg2 X {(n + l)(n’ + 
x 1 dz: W(v)D-l(n - 1, n’ - 1)[(X2 - K2v2){R(n - n’) - iye) 

- iyarapnn,(t) 
00 

- m  

-g2(n+n’) X-g2(n-n’)Kv]-rYgpnn,(t). (36) 
Here D(n, n’) is given by (27) and (35), where a and 6 have been replaced by a and p. 
The loss is treated as a linear process, and linearizing equation (36) we obtain 

where 

The  pair la), ( p )  represents a loss system well, when a quantum absorbed in the 
transition lp) -+ l a )  is not re-emitted before the state l a )  has decayed. Therefore 
1.) and Ip )  should be broad levels. Assuming that ya, yo Ku, we can take the 
Lorentzian in (38) outside the integral, and write 

We can now write the equation of motion for the density matrix of the electro- 
magnetic field, including both amplification and loss terms combining (34) and (37) : 

x [(X~-K2v2){R(n-n’)-iyb)-g2{(n+ l)+(n’+ 1))X+g2(n-n’)Kv] 

+ iybr,p,-l,n,-l(t) 1 
-&C(n+n’)p...(t). 

m 

dv W(v)D-l(n- l,?n’- 1)Zg2 X (nn’)1/2 
- m  

-YuPnn,(t) + C{(n+ l)(n’+ W2Pn+1,n,+1(t)  

4. Steady-state conditions 
The  diagonal part of equation (40) will contain velocity integrals of the type 
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When 
4g2 112 

Kal 9 Y a b  ( l +  Gn) 
we can perform the integration in (41) approximatively : 

Defining? 

we find the diagonal part of (40) to be 
- 1/2 B 

{ A  
p n n  = - A ( n + l )  1 +  -(7t+l)) pnIt-Cnpnn 

The steady-state solution pnn = 0 of this equation is obtained when 

and the solution is obviously 

where poo is chosen so that 

2 Pnn = 1. (48) 
It 

The result (47) differs from that of Scully and Lamb only by the presence of the 
square root in the denominator, but this leads to some significant differences in the 
photon distribution. The  threshold condition is still A = C. The  amplification 
factor of Scully and Lamb is 

(49) 
g2 A,, = 2 ~ ~ -  

YaYa b 

and we have 

exactly as in the semi-classical theory. The amplification factor A for moving atoms 
(equation (13)) is 2/n(y,b/Ku) times the one for stationary atoms (equation (6)) .  
This factor derives from the fact that, with moving atoms, only the fraction Yab/Kzt 
of the atoms is able to sustain the laser oscillations. 

7 From Scully and Lamb (1967) it follows that the coupling constant g is given by 
ga = ~ * R / 2 f i c a V ,  where V is the volume of the cavity. Introducing this into (44) and setting 
rJiV = hr, we regain equation (13). 

- 
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Above threshold, A > C, pnn increases with n up to a value f i ,  determined by the 
equation A B 112 

-- = (1. z f i )  ; c 
for n > f i  the value of pnn decreases monotonically. pnn is the probability of finding 
n photons in the cavity, This probability distribution has a maximum at 

f i  = --{(-I2- A A  1) 
B C  

in contrast to the result of Scully and Lamb 

E S L  = A (A - 1). 
B C  ( 5 3 )  

In  terms of the dimensionless intensity parameter I given by equation (2), we find 
that our result (52) exactly corresponds to the semi-classical result (14) derived by 
Stenholm and Lamb. 

The three expressions for I given in (2), (10) and (14) are compared in figure 1 as 
a function of the relative excitation parameter A/C. The photon distribution (47) is 
compared with that of Scully and Lamb in figure 2. 

The  width of the photon distribution can be obtained in the way used by Scully 
(1965). From (47) we have 

The half-width is obtained if we put P n + k , n + k  = ipn, r ; ,  giving 

z- 
v = l  

Using (52) and assuming that C2B/A3 is a small parameter, we obtain 

k C2B k2 C2B 
-p2:1----. 

v = 1  A3 2 A3 

From (56) we obtain the variance of the photon distribution 

The  corresponding result of the Scully-Lamb theory is 

(55) 

If we fix A/C in such a way that f i  in (52) is equal to E s L  in (53), we find from (57) 
and (58) 

o2 3 AIC 
usL2 2 AIC-1  

> 1  -- 

showing that we obtain a larger width u2 than uSL2. 
In  order to test the validity of the approximate calculation for the half-width, we 

calculate u2/Z exactly using a computer. In  figure 3 the results are compared with 
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0 . 5  

the approximate expressions (57) and (58). The  exact half-widths are larger than the 
approximate ones. The  asymptotic values for large A / C  do not seem to be given 
correctly by the approximative method, and the approximation is not sensitive enough 
to show the relation between our results and those of Scully and Lamb. 

S R , A / C = l 2  

- 1 I I 

A I C  
Figure 1. The  laser intensity I for the case of stationary atoms in the semi- 
classical theory (L) and quantum theory (SL) compared with the case of moving 
atoms (SR), which gives identical results in the semi-classical and quantum theory. 

The  corresponding expressions are equations (lo), ( 2 )  and (14). 

A / C  51.2 

n 

Figure 2 .  The photon distribution, equation (47), for moving atoms (SR) 
compared with the distribution found by Scully and Lamb for stationary atoms 

(SL) for the parameter values A/C = 1.2, 1.44 with B/A = 0.005. 
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Figure 3.  The approximative values of 0 2 / Z  compared with the exact ones: 
A, approximate curve for moving atoms (SR) ; B, approximate curve for stationary 
atoms (SL); C, exact curve for moving atoms (SR); D, exact curve for stationary 

atoms (SL). The parameter B/A is chosen to be 0.005. 

5.  Conclusions 
The results of the theory of Scully and Lamb (1967) are found to agree with the 

semi-classical theory of Lamb (1964) only if the detailed structure of the electro-' 
magnetic mode is neglected in the latter. The  exact result (10) is more complicated 
than the Scully-Lamb result. This is based on the assumption that each atom inter- 
acts equally strongly with the field. When the atoms are stationary this procedure 
seems to be inadequate as some atoms are situated exactly at the nodes of the field and 
therefore can undergo no transitions in the semi-classical picture. This effect of the 
mode structure gives rise to the difference between the expressions (8) and (10). As 
soon as the atoms move they see an average over the field and the mode structure 
becomes less important. For exact resonance between the atomic transitions and the 
cavity, w = Cl, only atoms with their Doppler-shifted transition frequencies within an 
atomic linewidth yab  from C2 interact with the field, and the approach of Scully and 
Lamb may be used. By drawing heavily on their work we obtain an expression for the 
photon distribution, which gives a threshold identical with the one derived by Sten- 
holm and Lamb (1969) in the semi-classical theory. This fact verifies our statement 
that the influence of the mode structure (which has been neglected both by Scully 
and Lamb and us) is less important in the case of moving atoms than in the one of 
stationary atoms. For a detuned laser ( w  # Q) the standing wave of the electro- 
magnetic field involves two sets of atoms. In  that case the treatment of Scully and 
Lamb becomes more difficult, and we plan to discuss this problem later. 

The  main results of the present theory are the following. Above threshold the 
intensity (14) rises more steeply than in the case of stationary atoms, equations (2) 
and (10) (see figure 1). For the same value of A / C  we thus find a larger photon 
number f i  (see figure 2 for A / C  = 1.2). The  line is broader than that of Scully and 
Lamb also when A / C  is adjusted, so as to give f i  = fiSL (see figure 2, the Scully and 
Lamb result for A/C = 1.44). The  approximative method used by Scully and Lamb 
t o  obtain the half-width is found to be inadequate to distinguish between the results 
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of Scully and Lamb and our results. For large A / C  the variance of Scully and Lamb 
is equal to the variance of a Poisson distribution, which is the distribution for an 
electromagnetic field in a coherent state (Glauber 1963). The asymptotic value of (57)  
is larger, but figure 3 suggests that the exact asymptotic limits are different. 

This paper emphasizes the importance of atomic motion in smearing the mode 
structure in a laser. An expression for the photon distribution is given, and compared 
with the expression given by Scully and Lamb. It is also pointed out that both ex- 
pressions should be used only well above threshold, as the derivation rests on the 
assumption that the number of photons constituting the field is large. 
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